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Correlations in scale-free networks: Tomography and percolation
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We discuss three related models of scale-free networks with the same degree distribution but different
correlation properties. Starting from the BarsbAlbert construction based on growth and preferential attach-
ment we discuss two other networks emerging when randomizing it with respect to links or nodes. We point out
that the Baralsi-Albert model displays dissortative behavior with respect to the nodes’ degrees, while the
node-randomized network shows assortative mixing. These kinds of correlations are visualized by discussing
the shell structure of the networks around an arbitrary node. In spite of different correlation behaviors, all three
constructions exhibit similar percolation properties. This result for percolation is also detected for a network
with finite second moment and its corresponding randomized models.
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INTRODUCTION ment. Starting from an arbitrary set of initial nodes, at each
time step a new node is added to the network. This node
Scale-free networks, i.e., networks with power-law degreérings with itm proper links which are connecteditonodes
distributions, have recently been widely studieste Refs. already present. The latter are chosen according to the pref-
[1,2] for a review. Such degree distributions have beenerential attachment prescription: The probability that a new
found in many different contexts, for example, in severallink connects to a certain node is proportional to the degree
technological webs such as the Interi8t4], the World  (number of link3 of that node. The resulting degree distri-

Wide Web[5,6], or electrical power gridg7], in natural net-  pytion of such networks tends [@8—30
works such as the network of chemical reactions in the living

cell[8—10], and also in social networks such as the network
of human sexual contac{d1], the sciencgd12,13 and the 2m(m+1)
movie actor[14,15 collaboration networks, or the network P(k)= mﬁ(s- (1)
of the phone call$16].

The topology of networks is essential for the spread of
information or infections, as well as for the robustness OfE

networks against intentional attack or random breakdown o fruction correlations develop spontaneously between the de-

elemen'ts. Recent stgd@s have focused. on a more Qetan ees of connected nodes. To assess the role of such correla-
topological characterization of networks, in particular, in thetions we shall randomize the BA network
degree correlations among nodgs17-264. For instance, Recently, Maslov and Sneppd@1] have suggested an

m.ar?weﬁhgological and biologficaltﬂetworksdshow tr??t noge%llgorithm randomizing a given network that keeps the degree
with high degree connect preferably to nodes with low de-yiqyih ifion constant. According to this algorithm at each

gree[4,21], a property referred to as dissortative mixing. Onstep two links of the network are chosen at random. Then,

the other hand, social networks show assortative miXingne eng of each link is selected randomly and the attaching
[17,29, ie., highly connected nodes are preferably conyggeg are interchanged. In case one, or both, of these new
nected o nodes with high degree. . links already exists in the network, this step is discarded and

In.t_hls paper we shall study some aspects of this to_pologya new pair of edges is selected. This restriction prevents the
specifically the importance of the degree correlatlons'l ppearance of multiple edges connecting the same pair of
scale-free networks and concentrate on the two following, jqas A repeated application of the rewiring step leads to a

important characteristics: the tomography of shell SUUClUre, hdomized version of the original network. We shall refer to

around an arbitrary node and percolation. We will introducethis model as the link-randomizetiR) model

a procedure to change correlations in networks that produces The LR model can be compared with another model

a_lssortanv'e mixing. We shall compare the,cqrrelatlon ProOPeyhich is widely studied in the context of scale-free networks,
ties of this model with the classical Bara#lbert con-

. . ly, with th fi ti del introduced by Bend
struction[1,27] and with an uncorrelated model. Although namey, W ¢ configuration modet infroduced by Bender

X : and Canfield[31,32. It starts with a given numbeN of
some results are already known in the literature we corrobo

te th findi d th ith th Its of nodes. Then is assigned to each node a nurkpef “edge
:r?o?jelese Indings and compare them wi € results or ouly g equal to its desired connectivity. The stubs of different

nodes are then connected randomly to each other; two con-
nected stubs form a link. One of the limitations of this “stub
reconnection” algorithm is that for broad distribution of con-
Our starting model is the one of Baraband Albert(BA) nectivities, which is usually the case in complex networks,
[27], based on the growth algorithm with preferential attach-the algorithm generates multiple edges joining the same pair

rapivsky and Redn€l30] have shown that in the BA con-
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of hub nodes and loops connecting the node to itself. How-

ever, the configuration model and the LR model get equiva- 2 Ny, (k) KN KP(K)

lent asN—co. P,(k) = ' - k__ ’ 3)
One can modify the link-randomization procedure in such S NLK) S kN (k)

a way that it generates an assortative network. Instead of i K K

choosing randomly two links, we now choose uniformly at
random two nodes in the network. Of each node, we thenvhereP(k) andN, are the degree distribution and the num-
select randomly one link. Taking these two links we continueber of nodes with degrelein the network, respectively. We
with the link-randomization procedure as above. We call thebear in mind that every link in the network is followed ex-
resulting networks node randomizédR). actly once in each direction. Hence, we find that every node
As we proceed to show, the three models have differenivith degreek is counted exactlk times. From Eq(3) fol-
properties with respect to the correlations between the ddews that(k),=(k?)/(k). This quantity, which plays a very
grees of connected nodes. While the L(Bonfiguration  important role in the percolation theory of network3g],
model is random, the genuine BA prescription leads to alepends only on the first and the second moment of the
network which is dissortative with respect to the degrees otiegree distribution, but not on the correlations. Of course
connected nodes and the NR model leads to an assortativg (k) =P (k).
network. This fact leads to considerable differences in the Note that adN— > we have(k?)—: for our scale-free
shell structure of the networks and also to sofnet ex-  constructions the mean degree in shell 1 depends signifi-
tremely large differences in their percolation characteristics. cantly on the network size determining the cutoff in the de-
We hasten to note that our simple models neglect many imgree distribution. For a given network sibethe values of
portant aspects of real networks such as geogréBBy84  (k), are the same for all three models. The first two shells
but stress on the importance to consider the higher correlare determined only by the degree distributions. In all other
tions in the degrees of connected nodes. shells the three models differ. For the L{onfiguration
model one finds for all shells in the thermodynamic limit
P/(k)=P,(k). However, since these distributions do not
possess finite means, the valueglof; are governed by the
Referring to spreading of computer viruses or human disfinite-size cutoff, which is different in different shells, since
eases, it is necessary to know how many sites get infected dhe network is practically exhausted within the first few
each step of the infection propagation. Thus, we examine theteps, see Fig. 1.
local structure in the network. Cohest al. [35] examined In our simulations we use networks based on the BA con-
the shells around the node with the highest degree for uncoptruction withm=2. For largerm the same qualitative re-
related networks. We will also examine the tomography forsults were observed. In the present work we refrain from
all our three models: the BA, the LR, and the NR model.discussion of a peculiar cage=1. Form=1 the topology
However, in our study we start from a node chosen at ranof the BA model is distinct from the one fan=2 since in
dom. This initial nodgthe roo} is assigned to shell number this case the network is a tree. This connected tree is de-
0. Then all links starting at this node are followed. All nodesstroyed by the randomization procedure and is transformed
reached are assigned to shell number 1. Then all links leavato a set of disconnected clusters. On the other hand, for
ing a node in shell 1 are followed and all nodes reached than=2 the creation of large separate clusters under random-
do not belong to previous shells are labeled as nodes of she#ation is rather improbable, so that most of the nodes stay
2. The same is carried out for shell 2, etc., until the wholeconnected. Figure 1 show) as a function of the shell
network is exhausted. We then g, , the number of nodes numberl. Panel(a) corresponds to the BA model, par(e)
in shelll for rootr. The whole procedure is repeated startingto the LR model, and panét) to the NR model. The differ-
at all N nodes in the network, givin®,(k), the degree dis- ent curves show simulations for different network siziis:
tribution in shelll. We defineP, (k) as =3000, N=10000, N=30000, and N=100000. All
points are averaged over ten different realizations except for
those for networks of 100 000 nodes with only one simula-

TOMOGRAPHY OF THE NETWORKS

2 N, (k) tion. In panel(d) we compare the shell structure for all three

r ' models atN=30000. The most significant feature of the
Pi(K)=— 2) graphs is the difference itk),. In the BA and LR models

> N (k) the maximum is reached in the first shell, while for the NR

kor model the maximum is reached only in the second shell:

(K)2pa<(k)2 r<(k)onr. This effect becomes more pro-

We are most interested in the average deg(&d nounced with increasing network size. In shells with large
=3>kP,(k) of nodes of the shell. In the epidemiological for all networks mostly nodes with the lowest degree 2 are
context, this quantity can be interpreted as a disease multfound.
plication factor aftefl steps of propagation. It describes how  The inset in graplta) of Fig. 1 shows the relation between
many neighbors a node can infect on average. Note that su@verage agey of nodes with connectivitk in the network as
a definition of P;(k) gives us for the degree distribution in a function of their degree for the BA model. The age of a
the first shell: node n and of any of its proper links is defined as
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FIG. 1. Mean degree valug) in shelll: (a) for the BA model,(b) for the LR model(c) for the NR model. Different curves correspond
to different network sizes: from top to bottom 100 000, 30 000, 10 000, and 3 000 nodes. Ten simulations were done for each value except
for the shells withl =2 atN=100 000 based on only one simulation. Paftglcompares the tomography of the models with 30 000:

from top to bottom NR model, LR model, and BA model. The inset in p&aeshows the average agg of a node as a function of its
degreek.

n(n)=(N—t,)/N, wheret, denotes the time of birth of the ity that a link leaving a node of degrdeenters a node with
node. For the randomized LR and NR models age has ndegreel. Neglecting the possibility of short looggvhich is
meaning. The figure shows a strong correlation between agaways appropriate in the thermodynamic limit-) and
and degree of a node. The reasons for these strong correldie inherent direction of link§which may be not totally
tions are as follows. First, older nodes experienced morappropriate for the BA modglve have

time steps than younger ones and thus have larger probability

to acquire nonproper bonds. Moreover, at earlier times there

are less nodes in the network, so that the probability of ac- EK kP(k)(k=1)P(I[k)

quiring a new link per time step for an individual node is Py(l)= . (4)
even higher. Third, at later time steps older nodes already > kP(k)(k—1)

tend to have higher degrees than younger ones, so the prob- K

ability for them to acquire new links is considerably larger
due to preferential attachment. The correlations between the The value of(k), gives important information about the
age and the degree bring some nontrivial aspects into the Bype of mixing in the network. To study mixing in networks
model based on growth, which are erased when randomizingne needs to divide the nodes into groups with identical
the network. properties. The only relevant characteristic of the nodes that
Let us discuss the degree distribution in the second shells present in all three models is their degree. Thus, we can
In this case we find that every link leaving a node of degreeexamine the degree correlations between neighboring nodes,
kin shell 1 is counted—1 times. LetP(l|k) be a probabil- which we compare with the uncorrelated LR model, where
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the probability that a link connects to a node with a certaincriterion for the configuration model:
degree is independent from whatever is attached to the other
end of the link: P(k|l)=kP(k)/(k)=kP(k)/2m. All other 1og— (k) )
relations would correspond to assortative or dissortative mix- Ge (k?)— (k) '
ing. Qualitatively, assortativity then means that nodes attach
to nodes with similar degree more likely than in the LR where the means correspond to an unperturbed netweprk (
model: P(k|1)>P(k|l) g=kP(k)/(k) for k=~I. Dissortativ- =0). For networks with degree distribution, EQ.), (k?)
ity means that nodes attach to nodes with very different dediverges a?N—oe. This yields for the random networks with
gree more likely than in the LR modeP(k|I)>kP(k)/(k)  such a degree distribution a percolation thresteplet1 in
for k>1 or I>k. Inserting this in Eq(4), and calculating the the thermodynamic limit, independent of the minimal degree
mean, one finds qualitatively th&k),=(k), r<(k), for ~ m; in the epidemiological terms this corresponds to the ab-
assortativity andk),>(k), for dissortativity. sence of herd immunities in such systems. Crucial for this
In the following we show where the correlations of the threshold is the power-law tail of the degree distribution with
BA and NR models originate. A consequence of the BA al-an exponent 3. Moreover, Ref[37] shows that the critical
gorithm is that there are two different types of ends for theexponent8 governing the fraction of noddd .. of the giant
links. Each node has exacthy proper links attached to it at componentM..=(q.—q)?, diverges as the exponent of the
the moment of its birth and a certain number of links that aredegree distribution approaches 3. Therefore M.. ap-
attached later. Since each node receives the same numbergrbaches zero with zero slope @s- 1.
links at its birth, towards the proper nodes a link encounters In Fig. 2 we plotted for the three models discusdéd as
a node with degre& with probability P(k). To compensate a function ofg. The behavior of all three models for a net-
for this, in the other direction a node with degreés en-  work size of 300 000 nodes is presented in pgaglIn the
countered  with  the  probability km)P(k)/m inset the size of the giant component was measured in rela-
=2kP(k)/(k)—P(k), so that both distributions together tion to the number of nodes remaining in the network (1
yield kP(k)/(k). On one end of the link, nodes with small —q)N and not to their initial numbeN. The other panels
degree are predominari®(k) <kP(k)/(k) for smallk. On  show the percolation behavior of each of the models at dif-
the other end, nodes with high degree are predomin&nt: (ferent network sizes: Pan@) corresponds to the BA model,
—m)P(k)/m>kP(k)/2m for k large. This corresponds to panel(c) to the LR model, and panétl) to the NR model.
dissortativity. Actually the situation is somewhat more com-For the largest networks withl=300 000 nodes we calcu-
plex since in the BA model these probability distributionslated five realizations for each model, and for those with
also depend on the age of the link. 30000, 10000, and 3 000 nodes averaging over ten realiza-
Assortativity of the NR model is a result of the node- tions was performed. For all three models within the error
randomizing process. Since the nodes with smaller degrelgars the curves at different network sizes coincide. This
are predominant in the node population, those links are prefshows that even the smallest network is already close to the
erably chosen that have on the end, with the randomly chathermodynamic limit. Alberet al. found a similar behavior
sen node, a node with a smaller degf&&k)>kP(k)/(k) in a study of BA networkg38]. They analyze networks of
for k smalll. Then the randomization algorithm exchangessizes N=1 000, 5000, and 20000 concluding that “the
the links and connects these nodes to each other. This leadserall clustering scenario and the value of the critical point
to assortativity for nodes with small degree, which is com-is independent of the size of the system.”
pensated by assortativity for nodes with high degree. In the simulations we find two regimes: for modergtee
find that the sizes of the giant components of the BA, LR,
and NR models obey the inequalitiedl, ga>M.. g
>M.. nr» While for g close to unity the inequalities are re-
Percolation properties of networks are relevant when disverted: M. ga<M., | k<M., yg. However, in this regime
cussing their vulnerability to attack or immunization which the differences betweeM. gp, M. g, and M., yr are
removes nodes or links from the network. For scale-free netsubtle and hardly resolved on the scales of Fig. 2. We note
works random percolation as well as vulnerability to a delib-that a similar situation was observed in Rgf7]. However,
erate attack have been studied by several gr¢8ps-4Qd.  there the size of the giant cluster was measured not as a
One considers the removal of a certain fraction of edges ofunction of q but of a scaling parameter in the degree distri-
nodes in a network. Our simulations correspond to the nodbution.
removal model,g is the fraction of removed nodes. Below  The observed effects can be explained by the correlations
the percolation threshold<g. a giant componentinfinite  in the network. Fog=0 one hasVl., go=M..  g=M_ r-
clustep exists, which ceases to exist above the threshold. ANow, the probability that single nodes lose their connection
giant component, and consequently, is exactly defined to the giant cluster depends only on the degree distribution
only in the thermodynamic limiN—c: it is a cluster to and not on correlations. So, the difference in khe must be
which a nonzero fraction of all nodes belongs. explained by the breakoff of clusters containing more than
In Refs.[32,36] a condition for the percolation transition one node. The probability for such an event is smaller in the
in random networks has been discussed: Every node alreadA than in the LR model, since dissortativity implies that
connected to the spanning cluster is connected to at least o@e finds fewer “regions,” where only nodes with low de-
new node. Referencg36] gives the following percolation gree are present.

PERCOLATION
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FIG. 2. Fraction of nodedl., in the giant component depending on the fractipof nodes removed from the networfh) for the BA
model, (c) for the LR model, andd) for the NR model. Different curves correspond to different network sizes: from top to bottom 300 000
(five simulationg, 30 000, 10 000, and 3 000 nodg@sn simulations eaghGraph(a) compares all three models idt= 300 000(from top to
bottom: BA model, LR model, and NR modeThe inset shows the fractidd .. of the number of nodes in the giant component relative to
the remaining number of nodes in the network{(d)N.

However, when we get to the region of largeas nodes proportional to its connectivity plus a positive constanthe
with low degree act as “bridges” between the nodes withinitial attractiveness. The resulting degree distribution of
high degree, the connections between the nodes with higbuch networks then tends ®(k)~k 3~~'™ [30,41]. For
degree are weaker in the case of the BA model than in thexample, choosings=4 andm=2, the degree distribution
case of the LR model. So, the probability that nodes withtends to
high degree break off is higher for the BA model than for the
LR model. There is no robust core of high-degree nodes in 12096
the network[17]. The correlation effects for the NR model, P(k)= (k+4)(k+5)(k+6)(k+7)(k+8)’
when compared with the LR model, are opposite to those for
the BA model. which has the second momefk?) = 28.

Vazquez and Moreno proposed that some networks with Applying the NR and LR procedures to such a network
assortative correlations may not exhibit a percolation transiwith N=10° nodes we obtain three differently correlated
tion even when the second moment of the degree distributiosystems. The results for percolation in these three cases are
is finite [22]. We check their proposition applying our proce- shown in Fig. 3. All points are averaged over ten different
dure to obtain assortative networks with a given degree disrealizations. The upper curve corresponds to the initial net-
tribution. For this purpose, we generate networks with finitework generated following the algorithfl80,41], the central
second moment as described in Rg89,41]. We use the BA  curve corresponds to the same network after link randomiza-
construction, but employ a different preferential attachmenttion, and the lower curve after node randomization. No sig-
the probability that a new link connects to a certain node isificant difference between the three models is detected in

6
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1 T —T other than ours. For the LR model the theoretical value of the

percolation threshold calculated according to E%). is q.
=5/6. Note that the critical exponent for the fraction of
nodes in the giant component =1, which is the regular
result for infinite-dimensional systemi37], but which is dif-
ferent from the divergingB for the link-randomized BA
model (without initial attractivenegs This exponent can
clearly be seen in the simulations.
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CONCLUSION

02r 1 Networks grown based on preferential attachment display
4e correlations. These correlations can be changed by applying
. . . ~L randomization algorithms. We consider three different mod-
0 0.2 4 g 0.6 08 1 els of scale-free networks: the genuine Basi#dbert con-
struction based on growth and preferential attachment and

FIG. 3. Fraction of nodebl .. in the giant component depending two networks emerging when randomizing it with respect to
on the fractiong of nodes removed from the network. The graph links or nodes. We point out that the BA model shows dis-
compares three models at=100000 (from top to bottom: sortative behavior with respect to the nodes’ degrees, while
Barabai-Albert with initial attractiveness, LR model, and NR the node-randomized network shows assortative mixing.
mode). The theoretical value,=5/6 is marked by an arrow. The However, these strong differences in the shell structure lead
inset shows the fractioM.. of the number of nodes in the giant only to moderate quantitative differences in the percolation
component relative to the remaining number of nodes in the netbehavior of the networks. This same result is found for a
work (1—q)N. network with finite second moment of the degree distribution
and its corresponding randomized models.

0

the curves. Measuring a second moment(kf)=28, we
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