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Correlations in scale-free networks: Tomography and percolation

R. Xulvi-Brunet, W. Pietsch, and I. M. Sokolov
Institut für Physik, Humboldt Universita¨t zu Berlin, Newtonstraße 15, D-12489 Berlin, Germany

~Received 13 March 2003; revised manuscript received 3 July 2003; published 22 September 2003!

We discuss three related models of scale-free networks with the same degree distribution but different
correlation properties. Starting from the Baraba´si-Albert construction based on growth and preferential attach-
ment we discuss two other networks emerging when randomizing it with respect to links or nodes. We point out
that the Baraba´si-Albert model displays dissortative behavior with respect to the nodes’ degrees, while the
node-randomized network shows assortative mixing. These kinds of correlations are visualized by discussing
the shell structure of the networks around an arbitrary node. In spite of different correlation behaviors, all three
constructions exhibit similar percolation properties. This result for percolation is also detected for a network
with finite second moment and its corresponding randomized models.
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INTRODUCTION

Scale-free networks, i.e., networks with power-law deg
distributions, have recently been widely studied~see Refs.
@1,2# for a review!. Such degree distributions have be
found in many different contexts, for example, in seve
technological webs such as the Internet@3,4#, the World
Wide Web@5,6#, or electrical power grids@7#, in natural net-
works such as the network of chemical reactions in the liv
cell @8–10#, and also in social networks such as the netw
of human sexual contacts@11#, the science@12,13# and the
movie actor@14,15# collaboration networks, or the networ
of the phone calls@16#.

The topology of networks is essential for the spread
information or infections, as well as for the robustness
networks against intentional attack or random breakdown
elements. Recent studies have focused on a more det
topological characterization of networks, in particular, in t
degree correlations among nodes@4,17–26#. For instance,
many technological and biological networks show that no
with high degree connect preferably to nodes with low d
gree@4,21#, a property referred to as dissortative mixing. O
the other hand, social networks show assortative mix
@17,25#, i.e., highly connected nodes are preferably co
nected to nodes with high degree.

In this paper we shall study some aspects of this topolo
specifically the importance of the degree correlations
scale-free networks and concentrate on the two follow
important characteristics: the tomography of shell struct
around an arbitrary node and percolation. We will introdu
a procedure to change correlations in networks that produ
assortative mixing. We shall compare the correlation prop
ties of this model with the classical Baraba´si-Albert con-
struction @1,27# and with an uncorrelated model. Althoug
some results are already known in the literature we corro
rate these findings and compare them with the results of
model.

THE MODELS

Our starting model is the one of Baraba´si and Albert~BA!
@27#, based on the growth algorithm with preferential attac
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ment. Starting from an arbitrary set of initial nodes, at ea
time step a new node is added to the network. This n
brings with itm proper links which are connected tom nodes
already present. The latter are chosen according to the p
erential attachment prescription: The probability that a n
link connects to a certain node is proportional to the deg
~number of links! of that node. The resulting degree distr
bution of such networks tends to@28–30#

P~k!5
2m~m11!

k~k11!~k12!
;k23. ~1!

Krapivsky and Redner@30# have shown that in the BA con
struction correlations develop spontaneously between the
grees of connected nodes. To assess the role of such co
tions we shall randomize the BA network.

Recently, Maslov and Sneppen@21# have suggested a
algorithm randomizing a given network that keeps the deg
distribution constant. According to this algorithm at ea
step two links of the network are chosen at random. Th
one end of each link is selected randomly and the attach
nodes are interchanged. In case one, or both, of these
links already exists in the network, this step is discarded
a new pair of edges is selected. This restriction prevents
appearance of multiple edges connecting the same pa
nodes. A repeated application of the rewiring step leads
randomized version of the original network. We shall refer
this model as the link-randomized~LR! model.

The LR model can be compared with another mo
which is widely studied in the context of scale-free networ
namely, with the configuration model introduced by Bend
and Canfield@31,32#. It starts with a given numberN of
nodes. Then is assigned to each node a numberki of ‘‘edge
stubs’’ equal to its desired connectivity. The stubs of differe
nodes are then connected randomly to each other; two
nected stubs form a link. One of the limitations of this ‘‘stu
reconnection’’ algorithm is that for broad distribution of co
nectivities, which is usually the case in complex networ
the algorithm generates multiple edges joining the same
©2003 The American Physical Society19-1
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of hub nodes and loops connecting the node to itself. Ho
ever, the configuration model and the LR model get equi
lent asN→`.

One can modify the link-randomization procedure in su
a way that it generates an assortative network. Instea
choosing randomly two links, we now choose uniformly
random two nodes in the network. Of each node, we t
select randomly one link. Taking these two links we contin
with the link-randomization procedure as above. We call
resulting networks node randomized~NR!.

As we proceed to show, the three models have differ
properties with respect to the correlations between the
grees of connected nodes. While the LR~configuration!
model is random, the genuine BA prescription leads to
network which is dissortative with respect to the degrees
connected nodes and the NR model leads to an assort
network. This fact leads to considerable differences in
shell structure of the networks and also to some~not ex-
tremely large! differences in their percolation characteristic
We hasten to note that our simple models neglect many
portant aspects of real networks such as geography@33,34#
but stress on the importance to consider the higher corr
tions in the degrees of connected nodes.

TOMOGRAPHY OF THE NETWORKS

Referring to spreading of computer viruses or human d
eases, it is necessary to know how many sites get infecte
each step of the infection propagation. Thus, we examine
local structure in the network. Cohenet al. @35# examined
the shells around the node with the highest degree for un
related networks. We will also examine the tomography
all our three models: the BA, the LR, and the NR mod
However, in our study we start from a node chosen at r
dom. This initial node~the root! is assigned to shell numbe
0. Then all links starting at this node are followed. All nod
reached are assigned to shell number 1. Then all links le
ing a node in shell 1 are followed and all nodes reached
do not belong to previous shells are labeled as nodes of s
2. The same is carried out for shell 2, etc., until the wh
network is exhausted. We then getNl ,r , the number of nodes
in shell l for root r. The whole procedure is repeated starti
at all N nodes in the network, givingPl(k), the degree dis-
tribution in shelll. We definePl(k) as

Pl~k!5

(
r

Nl ,r~k!

(
k,r

Nl ,r~k!

. ~2!

We are most interested in the average degree^k& l
5(kkPl(k) of nodes of the shelll. In the epidemiological
context, this quantity can be interpreted as a disease m
plication factor afterl steps of propagation. It describes ho
many neighbors a node can infect on average. Note that
a definition ofPl(k) gives us for the degree distribution i
the first shell:
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P1~k!5

(
r

N1,r~k!

(
k,r

N1,r~k!

5
kNk

(
k

kNk

5
kP~k!

^k&
, ~3!

whereP(k) andNk are the degree distribution and the num
ber of nodes with degreek in the network, respectively. We
bear in mind that every link in the network is followed e
actly once in each direction. Hence, we find that every no
with degreek is counted exactlyk times. From Eq.~3! fol-
lows that^k&15^k2&/^k&. This quantity, which plays a very
important role in the percolation theory of networks@36#,
depends only on the first and the second moment of
degree distribution, but not on the correlations. Of cou
P0(k)5P(k).

Note that asN→` we have^k2&→`: for our scale-free
constructions the mean degree in shell 1 depends sig
cantly on the network size determining the cutoff in the d
gree distribution. For a given network sizeN the values of
^k&1 are the same for all three models. The first two she
are determined only by the degree distributions. In all ot
shells the three models differ. For the LR~configuration!
model one finds for all shells in the thermodynamic lim
Pl(k)5P1(k). However, since these distributions do n
possess finite means, the values of^k& l are governed by the
finite-size cutoff, which is different in different shells, sinc
the network is practically exhausted within the first fe
steps, see Fig. 1.

In our simulations we use networks based on the BA c
struction withm52. For largerm the same qualitative re
sults were observed. In the present work we refrain fr
discussion of a peculiar casem51. For m51 the topology
of the BA model is distinct from the one form>2 since in
this case the network is a tree. This connected tree is
stroyed by the randomization procedure and is transform
into a set of disconnected clusters. On the other hand,
m>2 the creation of large separate clusters under rand
ization is rather improbable, so that most of the nodes s
connected. Figure 1 showŝk& as a function of the shel
numberl. Panel~a! corresponds to the BA model, panel~b!
to the LR model, and panel~c! to the NR model. The differ-
ent curves show simulations for different network sizes:N
53 000, N510 000, N530 000, and N5100 000. All
points are averaged over ten different realizations except
those for networks of 100 000 nodes with only one simu
tion. In panel~d! we compare the shell structure for all thre
models atN530 000. The most significant feature of th
graphs is the difference in̂k&2. In the BA and LR models
the maximum is reached in the first shell, while for the N
model the maximum is reached only in the second sh
^k&2,BA,^k&2,LR,^k&2,NR . This effect becomes more pro
nounced with increasing network size. In shells with largl
for all networks mostly nodes with the lowest degree 2
found.

The inset in graph~a! of Fig. 1 shows the relation betwee
average ageh of nodes with connectivityk in the network as
a function of their degree for the BA model. The age of
node n and of any of its proper links is defined a
9-2
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FIG. 1. Mean degree valuêk& in shell l: ~a! for the BA model,~b! for the LR model,~c! for the NR model. Different curves correspon
to different network sizes: from top to bottom 100 000, 30 000, 10 000, and 3 000 nodes. Ten simulations were done for each val
for the shells withl>2 at N5100 000 based on only one simulation. Panel~d! compares the tomography of the models withN530 000:
from top to bottom NR model, LR model, and BA model. The inset in panel~a! shows the average ageh of a node as a function of its
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h(n)5(N2tn)/N, wheretn denotes the time of birth of the
node. For the randomized LR and NR models age has
meaning. The figure shows a strong correlation between
and degree of a node. The reasons for these strong cor
tions are as follows. First, older nodes experienced m
time steps than younger ones and thus have larger proba
to acquire nonproper bonds. Moreover, at earlier times th
are less nodes in the network, so that the probability of
quiring a new link per time step for an individual node
even higher. Third, at later time steps older nodes alre
tend to have higher degrees than younger ones, so the p
ability for them to acquire new links is considerably larg
due to preferential attachment. The correlations between
age and the degree bring some nontrivial aspects into the
model based on growth, which are erased when randomi
the network.

Let us discuss the degree distribution in the second sh
In this case we find that every link leaving a node of deg
k in shell 1 is countedk21 times. LetP( l uk) be a probabil-
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ity that a link leaving a node of degreek enters a node with
degreel. Neglecting the possibility of short loops~which is
always appropriate in the thermodynamic limitN→`) and
the inherent direction of links~which may be not totally
appropriate for the BA model! we have

P2~ l !5

(
k

kP~k!~k21!P~ l uk!

(
k

kP~k!~k21!

. ~4!

The value of^k&2 gives important information about th
type of mixing in the network. To study mixing in network
one needs to divide the nodes into groups with identi
properties. The only relevant characteristic of the nodes
is present in all three models is their degree. Thus, we
examine the degree correlations between neighboring no
which we compare with the uncorrelated LR model, whe
9-3
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XULVI-BRUNET, PIETSCH, AND SOKOLOV PHYSICAL REVIEW E68, 036119 ~2003!
the probability that a link connects to a node with a cert
degree is independent from whatever is attached to the o
end of the link:P(ku l )5kP(k)/^k&5kP(k)/2m. All other
relations would correspond to assortative or dissortative m
ing. Qualitatively, assortativity then means that nodes att
to nodes with similar degree more likely than in the L
model:P(ku l ).P(ku l )LR5kP(k)/^k& for k' l . Dissortativ-
ity means that nodes attach to nodes with very different
gree more likely than in the LR model:P(ku l ).kP(k)/^k&
for k@ l or l @k. Inserting this in Eq.~4!, and calculating the
mean, one finds qualitatively that^k&15^k&2,LR,^k&2 for
assortativity and̂k&1.^k&2 for dissortativity.

In the following we show where the correlations of th
BA and NR models originate. A consequence of the BA
gorithm is that there are two different types of ends for
links. Each node has exactlym proper links attached to it a
the moment of its birth and a certain number of links that
attached later. Since each node receives the same numb
links at its birth, towards the proper nodes a link encount
a node with degreek with probability P(k). To compensate
for this, in the other direction a node with degreek is en-
countered with the probability (k2m)P(k)/m
52kP(k)/^k&2P(k), so that both distributions togethe
yield kP(k)/^k&. On one end of the link, nodes with sma
degree are predominant:P(k),kP(k)/^k& for small k. On
the other end, nodes with high degree are predominantk
2m)P(k)/m.kP(k)/2m for k large. This corresponds t
dissortativity. Actually the situation is somewhat more co
plex since in the BA model these probability distributio
also depend on the age of the link.

Assortativity of the NR model is a result of the nod
randomizing process. Since the nodes with smaller deg
are predominant in the node population, those links are p
erably chosen that have on the end, with the randomly c
sen node, a node with a smaller degree@P(k).kP(k)/^k&
for k small#. Then the randomization algorithm exchang
the links and connects these nodes to each other. This l
to assortativity for nodes with small degree, which is co
pensated by assortativity for nodes with high degree.

PERCOLATION

Percolation properties of networks are relevant when
cussing their vulnerability to attack or immunization whic
removes nodes or links from the network. For scale-free n
works random percolation as well as vulnerability to a del
erate attack have been studied by several groups@36–40#.
One considers the removal of a certain fraction of edges
nodes in a network. Our simulations correspond to the n
removal model;q is the fraction of removed nodes. Belo
the percolation thresholdq,qc a giant component~infinite
cluster! exists, which ceases to exist above the threshold
giant component, and consequentlyqc , is exactly defined
only in the thermodynamic limitN→`: it is a cluster to
which a nonzero fraction of all nodes belongs.

In Refs.@32,36# a condition for the percolation transitio
in random networks has been discussed: Every node alr
connected to the spanning cluster is connected to at leas
new node. Reference@36# gives the following percolation
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criterion for the configuration model:

12qc5
^k&

^k2&2^k&
, ~5!

where the means correspond to an unperturbed networq
50). For networks with degree distribution, Eq.~1!, ^k2&
diverges asN→`. This yields for the random networks wit
such a degree distribution a percolation thresholdqc51 in
the thermodynamic limit, independent of the minimal degr
m; in the epidemiological terms this corresponds to the
sence of herd immunities in such systems. Crucial for t
threshold is the power-law tail of the degree distribution w
an exponent<3. Moreover, Ref.@37# shows that the critical
exponentb governing the fraction of nodesM` of the giant
component,M`}(qc2q)b, diverges as the exponent of th
degree distribution approaches23. Therefore M` ap-
proaches zero with zero slope asq→1.

In Fig. 2 we plotted for the three models discussedM` as
a function ofq. The behavior of all three models for a ne
work size of 300 000 nodes is presented in panel~a!. In the
inset the size of the giant component was measured in r
tion to the number of nodes remaining in the network
2q)N and not to their initial numberN. The other panels
show the percolation behavior of each of the models at
ferent network sizes: Panel~b! corresponds to the BA mode
panel~c! to the LR model, and panel~d! to the NR model.
For the largest networks withN5300 000 nodes we calcu
lated five realizations for each model, and for those w
30 000, 10 000, and 3 000 nodes averaging over ten rea
tions was performed. For all three models within the er
bars the curves at different network sizes coincide. T
shows that even the smallest network is already close to
thermodynamic limit. Albertet al. found a similar behavior
in a study of BA networks@38#. They analyze networks o
sizes N51 000, 5 000, and 20 000 concluding that ‘‘th
overall clustering scenario and the value of the critical po
is independent of the size of the system.’’

In the simulations we find two regimes: for moderateq we
find that the sizes of the giant components of the BA, L
and NR models obey the inequalitiesM`,BA.M`,LR
.M`,NR , while for q close to unity the inequalities are re
verted: M`,BA,M`,LR,M`,NR . However, in this regime
the differences betweenM`,BA , M`,LR , and M`,NR are
subtle and hardly resolved on the scales of Fig. 2. We n
that a similar situation was observed in Ref.@17#. However,
there the size of the giant cluster was measured not a
function of q but of a scaling parameter in the degree dis
bution.

The observed effects can be explained by the correlat
in the network. Forq50 one hasM`,BA5M`,LR5M`,NR .
Now, the probability that single nodes lose their connect
to the giant cluster depends only on the degree distribu
and not on correlations. So, the difference in theM` must be
explained by the breakoff of clusters containing more th
one node. The probability for such an event is smaller in
BA than in the LR model, since dissortativity implies th
one finds fewer ‘‘regions,’’ where only nodes with low de
gree are present.
9-4
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FIG. 2. Fraction of nodesM` in the giant component depending on the fractionq of nodes removed from the network:~b! for the BA
model,~c! for the LR model, and~d! for the NR model. Different curves correspond to different network sizes: from top to bottom 30
~five simulations!, 30 000, 10 000, and 3 000 nodes~ten simulations each!. Graph~a! compares all three models atN5300 000~from top to

bottom: BA model, LR model, and NR model!. The inset shows the fractionM̃` of the number of nodes in the giant component relative
the remaining number of nodes in the network (12q)N.
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However, when we get to the region of largeq, as nodes
with low degree act as ‘‘bridges’’ between the nodes w
high degree, the connections between the nodes with
degree are weaker in the case of the BA model than in
case of the LR model. So, the probability that nodes w
high degree break off is higher for the BA model than for t
LR model. There is no robust core of high-degree node
the network@17#. The correlation effects for the NR mode
when compared with the LR model, are opposite to those
the BA model.

Vázquez and Moreno proposed that some networks w
assortative correlations may not exhibit a percolation tra
tion even when the second moment of the degree distribu
is finite @22#. We check their proposition applying our proc
dure to obtain assortative networks with a given degree
tribution. For this purpose, we generate networks with fin
second moment as described in Refs.@30,41#. We use the BA
construction, but employ a different preferential attachme
the probability that a new link connects to a certain node
03611
gh
e

h

in

r

h
i-
n

s-
e

t:
s

proportional to its connectivity plus a positive constantA, the
initial attractiveness. The resulting degree distribution
such networks then tends toP(k);k232A/m @30,41#. For
example, choosingA54 andm52, the degree distribution
tends to

P~k!5
12 096

~k14!~k15!~k16!~k17!~k18!
, ~6!

which has the second moment^k2&528.
Applying the NR and LR procedures to such a netwo

with N5105 nodes we obtain three differently correlate
systems. The results for percolation in these three cases
shown in Fig. 3. All points are averaged over ten differe
realizations. The upper curve corresponds to the initial n
work generated following the algorithm@30,41#, the central
curve corresponds to the same network after link random
tion, and the lower curve after node randomization. No s
nificant difference between the three models is detected
9-5
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the curves. Measuring a second moment of^k2&.28, we
find that the simulated networks already correspond to
thermodynamic limit. The assortative NR model clea
shows a percolation transition. Of course, this does not al
any conclusions about networks with assortative correlati

FIG. 3. Fraction of nodesM` in the giant component dependin
on the fractionq of nodes removed from the network. The gra
compares three models atN5100 000 ~from top to bottom:
Barabási-Albert with initial attractiveness, LR model, and N
model!. The theoretical valueqc55/6 is marked by an arrow. The

inset shows the fractionM̃` of the number of nodes in the gian
component relative to the remaining number of nodes in the
work (12q)N.
om

e

go
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other than ours. For the LR model the theoretical value of
percolation threshold calculated according to Eq.~5! is qc
55/6. Note that the critical exponent for the fraction
nodes in the giant component isb51, which is the regular
result for infinite-dimensional systems@37#, but which is dif-
ferent from the divergingb for the link-randomized BA
model ~without initial attractiveness!. This exponent can
clearly be seen in the simulations.

CONCLUSION

Networks grown based on preferential attachment disp
correlations. These correlations can be changed by appl
randomization algorithms. We consider three different mo
els of scale-free networks: the genuine Baraba´si-Albert con-
struction based on growth and preferential attachment
two networks emerging when randomizing it with respect
links or nodes. We point out that the BA model shows d
sortative behavior with respect to the nodes’ degrees, w
the node-randomized network shows assortative mixi
However, these strong differences in the shell structure l
only to moderate quantitative differences in the percolat
behavior of the networks. This same result is found fo
network with finite second moment of the degree distribut
and its corresponding randomized models.
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